
Bi-modal MPI and MPI+threads Computing on
Scalable Multicore Systems

Michael A. Heroux, Ronald B. Brightwell 1, Michael M. Wolf 2

1 Scalable Algorithms Department, Sandia National Laboratories
P.O. Box 5800, MS 1320, Albuquerque, NM 87185-1320, USA

{maherou, rbbrigh}@sandia.gov
2 Embedded and High Performance Computing Group, MIT Lincoln Laboratory

244 Wood Street Lexington, MA 02420-9185
michael.wolf@ll.mit.edu

Abstract—There is ample evidence that many single level MPI-
only applications will not perform optimally on scalable multicore
systems as core counts per node increase. However, within a
given application, certain phases of computation are impacted
more than others. For example, finite element applications tend to
scale very well with MPI-only when performing stiffness matrix
computations, but scale poorly in the solvers.

We present and demonstrate use of bi-modal parallel pro-
gramming using proposed new MPI features. Specifically, for
MPI processes on the same node, we exploit the underlying
architecture to create shared memory regions visible to some or
all processes on that node. Using these regions we can reduce
memory usage for some algorithms with minimal effort. We
can also initialize buffers in MPI-only mode and then switch
to MPI+threads mode to use threaded algorithms.

We demonstrate this bi-modal approach on several problems
and show how it provides essential value for current and future
computer systems. Specifically we illustrate how the bi-modal
features enable tunable shared memory thread counts that can
be changed to match the needs of various phases within a single
application.

I. INTRODUCTION

Modern multi-node computers have more than one core
per node, permitting two principle ways to program the
system. Figure 1 shows that we can view all cores through

Fig. 1. Simple block diagram of a multinode, multicore machine, typically
programmed using p = n ∗ k MPI processes, or n MPI processes with k
threads per process.

a single level MPI-only interface, call it Mode 1, ignoring the
underlying shared memory architecture (which is still typically
exploited by MPI runtime layer), or, in Mode 2, we can
explicitly manage the shared memory node via threads, leaving

MPI to manage internode parallelism1.
There are many situations where Mode 2 is advantageous.

Replicated data needed for initialization, property tables and
related global information can be stored per node instead of
per process. Mode 2 also permits the use of more sophisticated
fine-grain data parallelism that can lead to more robust and
higher performance computations. In particular, there is a large
collection of thread-based parallel libraries that offer excellent
performance for computations such as sparse solvers and basic
linear algebra computations. All of these libraries become
accessible for Mode 2 applications. Finally, threading has less
memory and data copying overhead than MPI, which can be
important for small data sets.

The challenge for an existing Mode 1 application is that con-
verting to Mode 2 requires ubiquitous change, even for phases
of computation that do not see a performance improvement
from Mode 2. What would be very attractive is to selectively
switch to Mode 2 for only some phases of computation.

In this paper we introduce a small set of proposed features
for MPI that enable bi-modal execution: Mode 1 in some (most
phases) of computation and Mode 2 in others. These features
are simple and incremental and inspired by the LIBSM li-
brary [1]. They enable all of the advantages listed above.
Furthermore, they allow us to dynamically change the scope of
threaded parallelism, effectively allowing us to choose the MPI
process vs. thread count factoring of the p cores at will during
the execution of an application to best match the requirements
of the given phase of computation.

II. PROPOSED MPI SHARED MEMORY FEATURES

In this section we present a set of proposed new features for
MPI [2]. These features exploit the underlying shared memory
that is present on multicore nodes, by allocating a region of
memory that is visible to all MPI ranks that participate in the
allocation request. The new feature set is composed of two new
functions and mechanisms for defining communicators whose

1These two ways of viewing the machine have many variations. In fact,
on nodes with non-uniform access memory, many applications find optimal
performance by assigning one MPI process per set of cores with uniform
access to memory, so that on a quad-socket, quad-core node we would have
4 MPI processes per node with 4 threads per MPI process.

ranks have a common shared memory resource, as shown in
Figures 2-3.

MPI COMM ALLOC MEM(comm, size, info, baseptr)
• IN comm - input communicator.
• IN size - size of memory segment in
bytes.

• IN info - info argument.
• OUT baseptr - pointer to beginning of
memory segment allocated.

• Collective call.
• Allocates region of shared memory
accessible by ranks in input
communicator.

• No guarantee of identical baseptr across
ranks.

• Otherwise, semantics are same as
MPI_ALLOC_MEM().

• Returns MPI_ERR_COMM if no shared memory
is possible.

• Return MPI_ERR_NO_MEM if memory is
exhausted.

MPI COMM FREE MEM(comm, base)
• IN comm - input communicator.
• IN base - initial address of memory
segment allocated by MPI_COMM_ALLOC_MEM

• Collective call
• Same semantics as MPI_FREE_MEM()

Fig. 2. Proposed MPI shared memory allocation functions and semantics.

New pre-defined MPI communicators:
• MPI_COMM_NODE - All ranks on the same
shared memory node.

• MPI_COMM_CACHE - All ranks that share a
cache.

• MPI_COMM_NETWORK - Inter node (one rank
per node).

Alternative approach:

Function to produce a communicator with specific properties.

MPI GROUP CREATE(comm, properties, newgroup)
• IN comm - input communicator.
• IN properties - bit string of desired
properties, such as ‘‘all MPI processes
that share uniform memory access’’.

• OUT baseptr - pointer to a new MPI_Group
that can be passed to MPI_Comm_Create to
build a new communicator.

Fig. 3. Proposed pre-defined MPI communicators (actual names may
change) or an alternative approach of a function call to create the desired
communicator.

Upon successful return from calling
MPI Comm alloc mem, each rank in the participating
communicator will be pointing to a shared buffer with the
global specified size. Except when running on specialized
light-weight operating systems, the physical pages will not be

mapped until the buffer values are initialized. This fact is good
since the threaded algorithms use case discussed in Section III
will typically have each MPI process initialize a portion of
the buffer before switching to threaded computation, so that
data will be properly placed on systems with non-uniform
memory access.

Given this feature set, a basic usage is as follows:

int n = ;
double *vals;
MPI_Comm_alloc_mem(
MPI_COMM_NODE, // comm
n*sizeof(double), // size in bytes
MPI_INFO_NULL, // placeholder for now
&vals); // Pointer to shared array (out)

// At this point:
// - All ranks in MPI_COMM_NODE have
// pointer to a shared buffer (vals).
// - Computation will continue in
// MPI-only mode with each MPI rank
// initializing a portion of vals,
// as described in the following
// section on use cases.
// After vals buffer is filled:
// - Can use the vals buffer as a common
// data table or
// - Can continue in MPI mode (using
// shared memory algorithms) or
// - Implement one of the other use cases,
// such as using threads from one rank:
int rank;
MPI_Comm_rank(MPI_COMM_NODE, &rank);

// Start threaded code segment
if (rank%cores_per_node==0) {
// Rank 0 executed threaded code.
// Other ranks wait.

}

MPI_Comm_free_mem(MPI_COMM_NODE, values);

The shared memory MPI features can be used in many ways,
but one of the most attractive properties is that threading can
be introduced within an existing MPI-only application in an
isolated fashion. It is even possible for a library to use shared
memory without changing the application interface.

An MPI-only application can use the shared memory
MPI features to incrementally introduce threaded or hybrid
MPI/threaded kernels into the code, targeting the most per-
formance critical sections first. Figures 4-6 demonstrate how
threaded/hybrid codes could be introduced into a MPI-only
code in a painless fashion using the shared memory MPI
extensions. Figure 4 is a very simple MPI program with two
MPI-only kernels that use the arrays x and y. In the Figure 5
example, x and y are allocated using the MPI shared memory

function and now are shared memory segments (shared across
the node) of size k times their sizes (on each MPI task) in
the first example, where k is the number of MPI tasks per
node. These shared memory variables are used in the hybrid
version of the second kernel in some threaded fashion. The
MPI kernel (MPIkernel1) has not changed. After this shared
memory infrastructure is in place, it is simple to replace the
MPIkernel1 with a hybrid kernel as shown in Figure 6. In this
fashion, multithreading can be introduced into an application
incrementally.

double *x = new double[n];
double *y = new double[n];

MPIkernel1(x,y);
MPIkernel2(x,y);

delete [] x;
delete [] y;

Fig. 4. Simple MPI program.

MPI_Comm_size(MPI_COMM_NODE, &nodeSize);
MPI_Comm_rank(MPI_COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm_alloc_mem(MPI_COMM_NODE,
n*nodeSize*sizeof(double),
MPI_INFO_NULL, &x);

MPI_Comm_alloc_mem(MPI_COMM_NODE,
n*nodeSize*sizeof(double),
MPI_INFO_NULL, &y);

MPIkernel1(&(x[nodeRank * n]),
&(y[nodeRank * n]));

if(nodeRank==0)
{

hybridKernel2(x,y);
}

MPI_Comm_free_mem(MPI_COMM_NODE, &x);
MPI_Comm_free_mem(MPI_COMM_NODE, &y);

Fig. 5. One MPI kernel and one MPI+X hybrid kernel.

MPI_Comm_size(MPI_COMM_NODE, &nodeSize);
MPI_Comm_rank(MPI_COMM_NODE, &nodeRank);

double *x, *y;

MPI_Comm_alloc_mem(MPI_COMM_NODE,
n*nodeSize*sizeof(double),
MPI_INFO_NULL, &x);

MPI_Comm_alloc_mem(MPI_COMM_NODE,
n*nodeSize*sizeof(double),
MPI_INFO_NULL, &y);

MPIkernel1(&(x[nodeRank * n]),
&(y[nodeRank * n]));

if(nodeRank==0)
{

hybridKernel1(x,y);
hybridKernel2(x,y);

}

MPI_Comm_free_mem(MPI_COMM_NODE, &x);
MPI_Comm_free_mem(MPI_COMM_NODE, &y);

Fig. 6. Two MPI+X hybrid kernels.

III. BI-MODAL USE CASES

In this section we discuss several possible uses for shared
memory features presented in the previous section. These use
cases are meant to illustrate a few of many possibilities.

A. Access to read-only data

Read-only data is commonly used for initialization steps
in applications, such as defining the geometry of a domain,
storing physical properties such as chemical reaction rates
and more. If the data set size is large, it must be distributed
across MPI processes, and data access must be coordinated.
In many cases, supporting distributed access to this kind
of data requires sophisticated programming strategies, since
discovering ownership of the data portions can be compli-
cated. Fortunately, the data set size is often small enough to
be replicated across MPI processes, bypassing the need for
complicated programming, but this approach does introduce
an overhead that is nontrivial as processor counts increase.

Shared memory allocation reduces the impact of replicated
data by creating a shared buffer for all processes on a node
and loading the read-only data into that buffer. The only
performance issue to consider is on non-uniform memory
architecture (NUMA) nodes, where it might make sense to
have a shared buffer for each uniform access memory region.

B. Connectivity structure setup

Applications with unstructured data must execute a discov-
ery phase where each process determines who it must commu-
nicate with for distributed computations. Although there are
sophisticated rendezvous algorithms that can reduce storage
complexity, the most straight-forward algorithms for discovery
computations use O(p2) storage, where p is the number of MPI
tasks involved in the collective operation. For small values of
p, this is not a large cost, but as p increases, this cost can be
substantial. Shared memory allows us to reduce the storage
cost to O(n2), where n is the number of nodes on the system.
As core counts per node increase, this reduced complexity can
be important.

C. Bi-modal MPI-only and Accelerators transition

Many emerging computing systems contain both multicore
CPUs and one or more accelerator devices, such as GPUs.
For example, the Cray XK6 [3] will combine 16 AMD cores
and two Nvidia GPUs on a single node. For these systems,
an existing MPI-capable application can execute 16 MPI
processes per node. However, if these processes create data
that will then be used as input for the GPUs or use output data
from the GPUs, it would be very challenging for all 16 MPI
processes to coordinate with each other in transferring data
to the GPUs. Instead, the MPI Comm alloc memfunction
could be used to create shared data objects and allow the
MPI processes to store and retrieve data from these objects.
Then only one MPI rank per GPU would be responsible for
transferring data between the host and device.

D. Threaded Algorithms

Although the above uses are important, the most important
opportunities for using shared memory lie in the ability
to introduce threaded algorithms and libraries into existing
MPI applications. MPI applications have traditionally been
very portable across many different architectures, including
multicore nodes using one MPI rank per core. MPI enforces an
unambiguous placement and ownership of data that naturally
match cache-based memory systems within a multicore node,
in addition to discrete memory images across multiple nodes.
As a result, even though there are unnecessary overheads using
MPI to manage parallelism on the node, MPI on multicore
nodes tends to perform as well as threading approaches, as
long as there is enough work to minimize the impact of MPI
overheads [4].

Having said this, use of MPI for parallelism on the node
complicates use of fine-grain data parallel algorithms and does
not perform as well as threading when data sizes per core
are small. Furthermore, the performance of some phases of
computation within an MPI-only application tend to degrade
more quickly than others, reducing overall program efficiency.

In many applications, the computations that suffer first
and most are the solvers, since solver performance is often
dictated by memory system performance. Multicore processor
memory designs allow one or a few cores to use all available
bandwidth if the computation requests it. This is a good thing,

but it means that memory system bound computations cannot
effectively use additional cores on a node. Threading can
mitigate the impact of this performance bottleneck by allowing
multiple cores to share data retrieved from main memory via
caches, thereby reducing the overall bandwidth requirements.

Threaded algorithms are also available from many high-
quality libraries. Threaded BLAS [5] and LAPACK [6] li-
braries are available from commercial vendors. Threaded
sparse direct solvers have been around for decades and are
presently represented by packages such as PARDISO [7],
MUMPS [8] and WSMP [9]. Many other threaded libraries ex-
ist, as do excellent threaded programming environments such
as OpenMP [10], Intel Threading Building Blocks (TBB) [11],
CILK [12] or Pthreads [13]. Furthermore, there is a tremen-
dous amount of work going on this area, since the entire
computing community is focused on addressing multicore
performance.

IV. CASE STUDY: FINITE VOLUME MINIAPPLICATION

A. Preconditioned iterative methods

Preconditioned iterative methods for solving linear sys-
tems are good examples of numerical algorithms that can
benefit from a hybrid MPI/threaded approach. Solver imple-
mentations based on a flat MPI programming model (where
subcommunicators are not utilized) often suffer from poor
scalability for large numbers of tasks. One difficulty with
these approaches is that with domain decomposition based
preconditioners, the number of iterations per linear solve step
increase significantly as the number of MPI tasks (and thus the
number of subdomains) becomes particularly large. Figures 7
and 8 shows an example of this difficulty for Charon, a
semiconductor device simulation code [14], [15], [16], with
a three level multigrid preconditioner. As the number of MPI
tasks increases, the number of linear solver iterations increases
(Figure 8). Figure 7 shows that these extra iterations require
an increasingly higher percentage of the total runtime as the
number of MPI tasks increase, resulting in a degradation in
the parallel performance. This kind of phenomenon is well-
known in the solver community and is one reason why solvers
dominate performance costs on large systems.

Fig. 7. Timing profile for Charon using strong scaling of 28M unknowns
on Sandia Tri-Lab Linux Capability Cluster.

Fig. 8. Average iteration counts as a function of processors used.

One approach to addressing this issue is to use shared
memory to reduce the number of subdomains in the solver.
Although the application would continue to operate with a
single subdomain per core, solver data would be organized to
reduce the number of subdomains so that multiple cores would
work together. Mathematically, this improves the convergence
rate and robustness of the solver. Thus, as long as we can
retain or improve parallel performance by using threads on
a subdomain, we will see better performance from fewer
iterations.

B. Bi-modal HPCPCG

To illustrate bi-modal MPI and MPI+threads programming,
we use a miniapplication from the Mantevo project [17],
[18] called HPCPCG (HPC preconditioned conjugate gradi-
ent). This miniapplication mimics some of the performance
characteristics of an unstructured finite volume application.
It partitions a 3-dimensional domain in the z dimension
and stored data in an unstructured fashion. It implements
a conjugate gradient iterative method preconditioned by a
symmetric Gauss-Seidel sweep. The basic kernels of HPCPCG
are sparse matrix-vector multiplication, vector dot product,
vector update and the forward/back sweep of the Gauss-Seidel
preconditioner. The forward/back sweep of the symmetric
Gauss-Seidel preconditioner can be implemented as one lower
triangular solve and one upper triangular solve [19], which
allows us to use a previously developed triangular solver
implementation [20]. These kernels are representative of a
whole class of preconditioned iterative methods, including
those used in Charon.

The original implementation of HPCPCG was an MPI-only
code. MPI does fairly well on all kernels when compared to
threads, except for the forward/back sweep. HPCPCG works
like most domain decomposition codes by restricting the
sweep to each subdomain assigned to an MPI process. In this
way, there is no inter-processor communication and the sweep
is done independently on each process. However, this original
implementation suffers from iteration inflation, similar to that
seen in Figure 8.

Using the shared memory MPI features (described in Sec-
tion II), we can change the behavior of the preconditioner
so that it operates on fewer but larger domains. This can
accomplished by having one of the MPI tasks belonging to
a given MPI COMM NODE communicator be responsible
for the preconditioning using a larger domain correspond-
ing to the combined domains of all the MPI tasks on the
MPI COMM NODE communicator. This MPI task can spawn
threads to utilize all the cores on a given node for the pre-
conditioning step. Decreasing the number of domains for the
preconditioner should reduce the number of iterations in the
PCG algorithm. Assuming the multithreaded preconditioning
steps scale, this should result in a reduction in the runtime over
the MPI-only application. By using the shared memory MPI
extensions, the rest of the application, including the solver,
can continue to be implemented in MPI-only mode, with only
minor changes to the code.

The preconditioned conjugate gradient method is shown in
Figure 9. This figure allows us to outline our new bi-modal
HPCPCG implementation, which differs from the original
MPI-only HPCPCG implementation in the preconditioning
steps. The preconditioning steps, which are implemented using
the threaded triangular solve kernels, are encapsulated in
the red boxes. Thus, the vectors zi, the vectors ri, and the
preconditioning matrix M (in reality the factors of M) are
allocated using the MPI shared memory extensions since these
are the entities involved in the preconditioning. As before, the
operations not encapsulated in the red boxes are computing in
an MPI-only mode.

Fig. 9. Outline of bi-modal MPI-only and MPI+threads HPCPCG imple-
mentation for solving Ax = b. M represents the symmetric Gauss-Seidel
preconditioner. Multithreaded preconditioning steps are encapsulated by red
boxes. The remaining lines of the algorithm are computed in MPI-only mode.

C. Level-set triangular solver

An important part of this bi-modal MPI and MPI+threads
miniapplication HPCPCG is the multithreaded triangular solve
kernel. We use a level-set triangular solve that we previously

implemented [20] and was previously described in [21]. After
expressing the data dependencies of the triangular solve for
a triangular system as a directed acyclic graph (DAG), a
level-set is calculated for this DAG. The level-sets of this
DAG represent sets of row operations in the triangular solve
operation that can be performed independently. Threads are
used to work on these independent sets of row operations
with synchronization of the threads (barriers) occurring af-
ter each level. This approach is most beneficial for solving
triangular systems resulting from incomplete factorizations,
where the resulting matrix factors are sufficiently sparse to
yield sufficiently large levels. For matrices that do not result
in sufficiently large levels, this approach to parallelism will
not be particularly effective (as we will see in the subsequent
section). We showed that for matrices where the resulting
levels are sufficiently large, the synchronization costs in our
multithreaded algorithm are small enough to allow for good
parallel performance [20].

V. RESULTS

We made the modifications to HPCPCG to obtain the
bimodal MPI-only and MPI+threads implementation as de-
scribed in the previous section. The HPCPCG implementation
calls the level-set multithreaded triangular solver (described
in [20]), which uses pthreads for multithreaded parallelism.
HPCPCG was built with a current development branch of
OpenMPI that has implemented the proposed MPI shared
memory extensions and architecture aware communicators. We
ran our experiments on the Tri-Laboratory Linux Capacity
Clusters computing resource glory, which has four quad-core
2.2 GHz AMD processors per node.

In our initial set of numerical experiments, we ran HPCPCG
for two different size problems, a 16x16x16 grid and a
32x32x32 grid. We varied the number of threads in the ex-
periments, using one (MPI-only), two, four, and eight threads
in the preconditioning step. All runs utilized eight MPI tasks
in the rest of the HPCPCG algorithm.

Figures 10 and 11 show the results of our numerical exper-
iments2. Figure 10 reports the number of iterations needed
for convergence to a specified tolerance for the different
versions of the HPCPCG algorithm and the different size
problems. As expected the MPI-only version of HPCPCG
(magenta bars) requires more iterations to converge than the
multithreaded HPCPCG variants that use larger subdomains in
their preconditioning.

Figure 11 shows the runtimes of the multithreaded HPCPCG
variants relative to the MPI-only version of HPCPCG. A rela-
tive runtime less than one corresponds to an improvement over
the MPI-only HPCPCG while a relative runtime greater than
one corresponds to a variant being more costly than the MPI-
only HPCPCG. Although the multithreaded HPCPCG variants
had significantly fewer linear iterations in the PCG solver than

2These results are preliminary and not indicative of the full potential of
this approach due to a bug in our MPI library that severely limits the size
of problem we can solve. Based on previous work, we expect our timings to
improve markedly before the final version of this paper is due.

the MPI-only version, the runtimes of these multithreaded
HPCPCG are only slightly improved over than that of the
MPI-only version for the two thread variant and worse for
the other variants. This increased runtime is due primarily to
an increase in the cost of the preconditioning step for the
multithreaded HPCPCG versions. The preconditioning cost is
growing as the number of threads increases because the level-
set multithreaded triangular solver is not scaling well for these
triangular systems. The triangular solver implementation does
not scale well since the average number of rows per level
resulting from the triangular systems is typically small for
these small regular grids. For systems with a larger average
number of rows per level, we would expect better scalability
for the triangular solver and improved runtime for the overall
HPCPCG algorithm.

Fig. 10. Iteration counts for two different size (FD16: 16x16x16 grid, and
FD32: 32x32x32 grid) HPCPCG experiments as a function of number of
threads used.

Fig. 11. Runtime (relative to MPI-only HPCPCG) for two different size
(FD16: 16x16x16 and FD32: 32x32x32) HPCPCG experiments as a function
of number of threads used.

VI. SUMMARY AND CONCLUSIONS

As the number of cores per node increase in multicore
systems, it will become increasingly difficult for many MPI-
only applications to scale. At the same time, migrating an
entire MPI-only application to MPI+threads is unnecessary
at this time, since MPI-only is sufficient for many phases
of computation. Thus, we advocate that these applications,
moving forward, adopt a bi-modal MPI and MPI+X program-
ming model. The appeal of this approach results from the
ease in which threading/hybrid parallelism can be integrated
into targeted kernels of an MPI-only application with few
changes to the rest of the MPI-only application. For instance,
the programmer can replace the MPI-only kernels that are not

scaling with MPI+threaded kernels. In this paper, we focused
on bi-modal MPI and MPI+threads as a reasonable approach.
We discussed how MPI can naturally provide shared memory
extensions and architecture aware communicators to facilitate
bi-modal MPI and MPI+threads parallelism. MPI is the natural
place for these extensions because the MPI runtime layer is
aware of the processor topology and can partition core sets
as requested by the user. We described three use cases where
using these MPI shared memory extensions can be particularly
beneficial: accessing read-only data, setting up connectivity
structures, and introducing threading programming into an
MPI-only application.

One promising use of this bi-modal MPI and MPI+threads
approach is in scalable linear solvers. Such hybrid
MPI/threaded algorithms can lower iteration counts by reduc-
ing the number of MPI tasks (and subdomains), hopefully
allowing the solvers to scale to hundreds of thousands of
computational cores on multi-core architectures. We gave a
specific example of a bi-modal MPI and MPI+threads ap-
proach to linear solvers with the miniapplication HPCPCG.
The new bi-modal implementation of HPCPCG uses MPI-
only kernels for most of the computation and MPI+threads
for the preconditioning in order to mitigate the rising iteration
counts due to the number of subdomains in the preconditioner.
We used the MPI shared memory extensions to interface this
hybrid kernel with the rest of the MPI-only kernels in the
miniapplication. We were successful in using the threaded
kernels to reduce the iteration count but less successful in
reducing the overall runtime of the algorithm. The major
problem we faced in reducing the runtime was the performance
of the multithreaded triangular solve for this problem. In order
to gain more scalability in this linear solver, we need a more
scalable multithreaded triangular solve implementation, which
we will address in future work.

Acknowledgments

We thank Brian Barrett, Greg Koenig, Geoffroy Vallee for
their efforts to define and provide the shared memory MPI
capabilities, and Paul Lin and Carter Edwards for the use of
their performance data. We thank Erik Boman for his input and
help with the preconditioning. This work was funded as part of
the Extreme-scale Algorithms and Software Institute (EASI)
by the Department of Energy, Office of Science. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration, under
contract DE-AC-94AL85000.

REFERENCES

[1] David Shirley, “LIBSM: A Shared Memory Enhancement to MPI
programming,” http://www.siam.org/meetings/cse00/ms31.htm, Wash-
ington, DC, USA, 2000, Presentation at the FIrst SIAM Conference
a Computational Science and Engineering.

[2] (2010) Shared memory extensions for mpi. [Online]. Avail-
able: http://meetings.mpi-forum.org/secretary/2010/09/slides/brightwell-
mpi-shared-memory.pdf

[3] (2011) Cray Inc., The Supercomputer Company - Cray XK6 System.
[Online]. Available: http://www.cray.com/Products/XK6/KX6.aspx

[4] H. C. Edwards, “Trilinos threadpool library v1.1,” Sandia National
Laboratories, Tech. Rep. SAND2009-8196, 2009.

[5] “An updated set of basic linear algebra subprograms (blas),” ACM Trans.
Math. Softw., vol. 28, no. 2, pp. 135–151, 2002.

[6] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney,
J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen,
“Lapack: a portable linear algebra library for high-performance com-
puters,” in Supercomputing ’90: Proceedings of the 1990 ACM/IEEE
conference on Supercomputing. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1990, pp. 2–11.

[7] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker, “Pardiso: a high-
performance serial and parallel sparse linear solver in semiconductor
device simulation,” Future Gener. Comput. Syst., vol. 18, no. 1, pp. 69–
78, 2001.

[8] (2010) Mumps solver. [Online]. Available:
http://www.enseeiht.fr/lima/apo/MUMPS

[9] A. Gupta, “Recent advances in direct methods for solving unsymmetric
sparse systems of linear equations,” ACM Trans. Math. Softw., vol. 28,
no. 3, pp. 301–324, 2002.

[10] (2010) Openmp.org. [Online]. Available: http://openmp.org/
[11] (2009) Intel thread building blocks homepage. [Online]. Available:

http://www.threadingbuildingblocks.org/
[12] (2010) Multicore Programming Software. [Online]. Available:

http://www.cilk.com
[13] (1997) pthread.h. [Online]. Available:

http://www.opengroup.org/onlinepubs/007908799/xsh/pthread.h.html
[14] P. Lin, J. Shadid, M. Sala, R. Tuminaro, G. Hennigan, and R. Hoek-

stra, “Performance of a parallel algebraic multilevel preconditioner for
stabilized finite element semiconductor device modeling,” Journal of
Computational Physics, vol. 228, no. 17, pp. 6250–6267, 2009.

[15] G. Hennigan, R. Hoekstra, J. Castro, D. Fixel, and J. Shadid, “Simulation
of neutron radiation damage in silicon semiconductor devices,” Sandia
National Laboratories, Tech. Rep. SAND2007-7157, 2007.

[16] P. T. Lin and J. N. Shadid, “Performance of an MPI-only semiconductor
device simulator on a quad socket/quad core InfiniBand platform,”
Sandia National Laboratories, Tech. Rep. SAND2009-0179, 2009.

[17] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[18] Michael A. Heroux, “Mantevo Home Page,”
http://software.sandia.gov/mantevo, 2008.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2003.

[20] M. M. Wolf, M. A. Heroux, and E. G. Boman, “Factors Impacting
Performance of Multithreaded Sparse Triangular Solve,” Sandia Na-
tional Laboratories, Tech. Rep. SAND2010-0331, 2010, presented at
VECPAR’10.

[21] J. H. Saltz, “Aggregation methods for solving sparse triangular systems
on multiprocessors,” SIAM Journal on Scientific and Statistical Com-
puting, vol. 11, no. 1, pp. 123–144, 1990.

